Modeling conflict, with examples from terrorism

Kristian Skrede Gleditsch

Based on joint work with Aaron Clauset (SFI), Lindsay Heger (UCSD), and Maxwell Young (Waterloo)

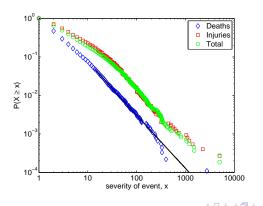
Department of Government, University of Essex & Centre for the Study of Civil War, PRIO http://privatewww.essex.ac.uk/~ksg/

20 November 2007 CABDyN Seminar, Said Business School, Oxford University

1/18

Introduction

- Scale invariance in conflict data
- Frequency and severity of terrorism (CYG JCR 2007)
- Implications for study of terrorism
- Frequency and severity in Israel-Palestine conflict (CHYG 2007)


Scale invariance in conflict data

- L.F. Richardson 1948 demonstrated the scale invariant distribution of war magnitude/severity
- However, almost all subsequent research considers conflict as incidence or binary events
- Some debate on general vs. separate theories for larger or smaller conflicts (*International Interactions* 1990)
- Specific work on war size: Cioffi-Revilla 1991 JCR forecast of Gulf War magnitude; Lacina 2006 JCR on civil wars
- Cederman 2003 APSR: computer simulation of geopolitical system that reproduces a scale invariant war distribution
- Johnson et al. 2006: scale invariance for a large range of conflicts, including events within conflict; Spirling ND for democide

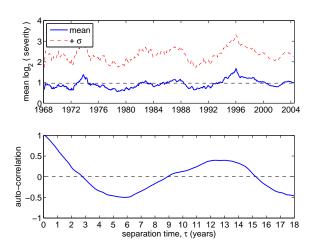
Scale invariance in terrorism

- Most studies of terrorism focus on incidence, or accounting for location where and when attacks occur
- CYG in J. Conflict Resolution 51 (2007): frequency-severity in MIPT data on terrorist events since 1968

Summary of distributions

Distribution	N	$\langle x \rangle$	$\sigma_{ m std}$	x_{max}	N _{tail}	α	x_{\min}	$p_{\mathrm{KS}} \geq$
Injuries	7456	12.77	94.45	5000	259	2.46(9)	55	0.41
Deaths	9101	4.35	31.58	2749	547	2.38(6)	12	0.94
Total	10878	11.80	93.46	5213	478	2.48(7)	47	0.99

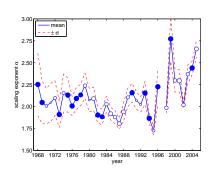
A summary of the distributions with power-law fits from the maximum likelihood method. $N(N_{tait})$ depicts the number of events in the full (tail) distribution. The parenthetical value depicts the standard error of the last digit of the estimated scaling exponent.

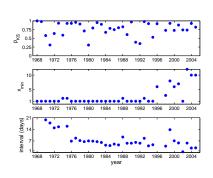


Why is this interesting?

- Terrorist events vary dramatically in their severity
- Terrorist seek media attention and spectacular attacks
- More severe attacks can provide signals of resolve to governments
- Political and economic impact of terrorism a function of severity
 - 11 Sept attack on WTC/Pentagon vs. previous 1993 WTC bombings
 - 7 July London bombings vs. 21 July copy-cat attack
- Suggested predictors in work on terrorist incidence (e.g., Li JCR 2005) unable to account for variation in severity
- Severity offers a complimentary perspective to incidence

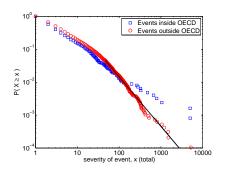
Trends in average log-severity

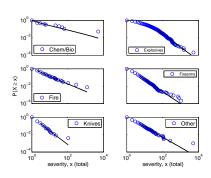

(upper) average log-severity (deaths), 24 months sliding window


(lower) ACF of average log-severity

7/18

Trends in scaling parameter




(L) Average scaling exponent α for two-year periods (R top) significance, one-sided KS test (R middle) estimated x_{\min}

(R bottom) average inter-event interval for events in tail

Disaggregating by locus and weapon type

- (L) Frequency-severity distributions for OECD and non-OECD nations
- (R) Frequency-severity distributions by weapon types

Generative models for scale invariance

- Many generative models can generate scale invariant distributions
- Self-organized criticality model applied to forms of conflict such as interstate wars, strikes
- Limitations
 - Terrorism is not inherently spatial phenomenon
 - Severity not only function of size of explosion
 - Substitution between targets/weapons
- Johnson et al. fragmentation and coalescence model of insurgency
- CYG JCR: Toy model for scale invariance through competitive forces

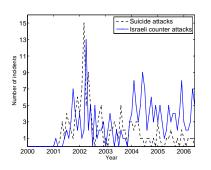
Toy model for scale invariance

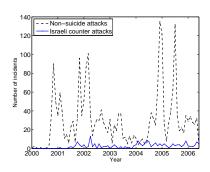
Competition non-state actor (terrorist) and government

- Severity function of planning and time invested
- Selection mechanism where probability event executed inversely related to planning required
- Payoff of additional planning proportional to time already invested
- Potential severity: $p(t) \propto e^{\kappa t}$
- Severity of real event to planning time of a potential event: $\mathbf{x} \propto \mathrm{e}^{\lambda t}$
- After selection of realized events:

$$\int p(x) \, \mathrm{d}x = \int p(t) \, \mathrm{d}t \to p(x) \propto x^{-\alpha}$$
 where $\alpha = 1 - \kappa/\lambda$

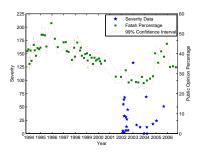
If slight advantage to state $|\kappa|\gtrsim |\lambda|,$ then we get a power law with exponent $\alpha\gtrsim {\bf 2}$

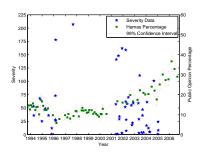



Counterterrorism and beyond

- Standard approach considers substitution of targets (Enders and Sandler 1993, 2002): Countermeasures make alternative targets relatively more attractive
- But, calculus of terrorism much more complicated, e.g.:
 - inter-group competition, political support
 - violence vs. non-violence, severe vs. non-severe
- Data allow evaluating these influences in Israel-Palestine conflict
- Focus on main players: Fatah, Hamas, PFLP, PIJ
- Plus, data on Israeli countermeasures and Palestinian support

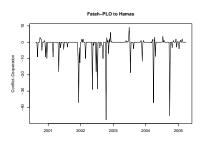
Israeli countermeasures

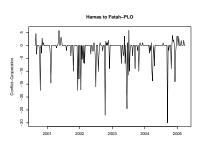




- (L) Counts for suicide attacks and Israeli counter-terrorism events
- (R) Counts for non-suicide and Israeli counter-terrorism events

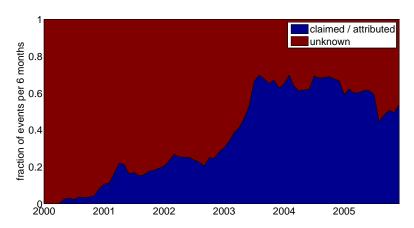
Competition, imitation, and public opinion



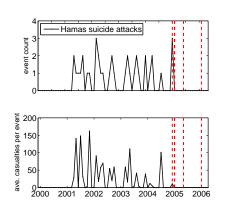


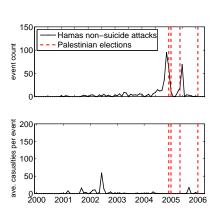
- (L) Fatah suicide attack severity (left axis) and public approval (right)
- (L) Hamas suicide attack severity (left axis) and public approval (right)

No evidence of coordination



- (L) Fatah to Hamas conflict cooperation score, by week
- (R) Hamas to Fatah conflict cooperation score, by week


Change in share of claimed attacks



Oxford CABDyN

Attack modes and elections

- (L) Incident frequency (upper pane) and average casualties per attack (lower), suicides
- (R) Incident frequency (upper pane) and average casualties per attack (lower), non-suicides

17 / 18

Summary

- Frequency-severity distributions in conflict data
- Thinking about event severity offers important new insights
- Calculus of terrorism is highly complex
 - Many possible strategies
 - Many possible targets and modes
 - Many possible interpretations of data
- In Israel-Palestine conflict evidence of
 - inter-group competition: innovation, imitation
 - interaction with political processes: public support, elections

